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Abstract. The electronic temperature dependence of the optical absorption of silver nanoparticles is inves-
tigated in the framework of the time-dependent local-density approximation at finite temperature. Below
the spectral region of interband transitions, we have found that the electronic temperature leads to a
broadening and spectral shift of the surface plasmon resonance. The calculated differential transmission
is in good agreement with recent experimental measurements obtained with time resolved pump-probe
techniques.

PACS. 32.80.Dz Autoionization – 36.40.Gk Plasma and collective effects in clusters

1 Introduction

Ultrafast spectroscopy using femtosecond laser pulses is
a well suited technique to study the electronic energy re-
laxation mechanisms in metallic nanoparticles [1,2]. The
experiments have been carried out with nanoparticles of
noble metals containing several thousands of atoms and
embedded in a transparent matrix. By using a time re-
solved pump-probe configuration it is possible to have
access to the spectral and temporal dependence of the
differential transmission, ∆T̄

T̄
(t, ω), defined as the normal-

ized difference between the probe pulse with and without
the pump pulse. This quantity contains the information
concerning the electron dynamics which is measured as a
function, of the pump-probe time delay t and of the laser
frequency ω.

For pump-probe delays longer than a few hundreds
of femtoseconds the thermalization of the electrons is
achieved leading to an increase of the electronic tempera-
ture of several hundreds of degrees. However, the electronic
distribution is not in thermal equilibrium with the lattice,
the thermal relaxation to the lattice being achieved in a
few picoseconds via the electron-phonon scattering. The
energy exchange between the electrons and the lattice can
be described by the two temperature model leading to
a time-dependent electronic temperature Te(t). Providing
that the relative changes of the dielectric function with re-
spect to a non-perturbed system are weak (linear regime)
and that it is only due to a modification of the electronic
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temperature of the confined quantum electron distribu-
tion, one may identify the spectral dependence of the dif-
ferential transmission measured for a given time delay as
the difference of the linear absorption cross-sections eval-
uated at different electronic temperatures.

In order to model and interpret the experimental
results, the optical absorption cross-sections of silver
nanoparticles encapsulated in an alumina matrix are eval-
uated in the framework of the time-dependent local-
density approximation (TDLDA) at finite-temperature
within the spherical jellium model. In this model only
the 5s valence electrons are fully treated quantum-
mechanically whereas the screening effects associated with
the polarization of the localized 4d electrons are included
by means of a background which is taken into account
via the experimental dielectric function of the bulk metal,
εd(ω) [3–5]. This approach is made in the spirit of evalu-
ating the importance of the conduction electrons in the
dynamical behavior of the surface plasmon resonance,
which so far as not been attempted. Let us empha-
size that the contribution of the core electrons is also
important to consider as was shown in previous works
[1,2]. In these papers the corresponding interband con-
tribution to the dielectric function was modelled with
a temperature-dependent RPA bulk-like dielectric func-
tion, the temperature being itself time-dependent via a
two temperature model. Strictly speaking, one should take
into account finite-size effects on the electronic distribu-
tion, an effect which becomes important only for small
size aggregates. In this work we will not incorporate the
core electrons. The screening coming from the surrounding
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matrix is taken into account through a constant dielectric
function, εm [6]. Finally, thermal effects are included us-
ing the Fermi-Dirac statistics within the grand-canonical
ensemble. We show that our theoretical model is able to
reproduce the main trends of the experimental results. In
particular, the broadening and spectral shift of the sur-
face plasmon are well reproduced. In the following, atomic
units are used unless otherwise specified and kB is the
Boltzmann’s constant.

2 Theoretical method

2.1 Ground-state

The metallic nanoparticles are described in the spherical
background jellium model, which is known to be a very
good approximation for closed-shell clusters. This model
consists in replacing the real ionic core potential by the
potential of a constant positive background correspond-
ing to a uniformly distributed charge density �I [7]. For
a nanoparticle of radius R = rsN

1/3 having A singly-
charged ionic cores and N valence electrons, this potential
is given by

Vjel(r) = −
∫
VC(r, r′) �I(r′) dr′ (1)

with

�I(r′) =
{(

A
V

)
= 3

4πr3
s

for r′ ≤ R

0 for r′ > R
. (2)

For Ag we have used rs = 3.02 a.u. The poten-
tial, VC(r, r′), which appears in (1) corresponds to the
Coulomb interaction between two charges situated at r
and r′ in a medium constituted by a sphere, of radius
R and static dielectric function εd(0), and embedded in
a transparent matrix with a constant dielectric function
εm [8,9]. In the present work we have assumed that εd(0)
is temperature independent. The electronic system is as-
sumed to be at a thermal equilibrium with a tempera-
ture, Te. In the Kohn-Sham formulation of the density
functional theory at finite-temperature within the grand-
canonical ensemble [10–14], the ground-state electronic
density ρ of an N -electron system is written, in terms
of single-particle orbitals and energies ϕi and εi, as

ρ(r) =
N∑

k=1

fk ρk(r) =
N∑

k=1

fk |ϕk(r)|2 (3)

where fk = [1 + exp {(εk − µ)/kBTe}]−1 are the Fermi oc-
cupation numbers and µ the chemical potential. These or-
bitals and energies obey the Schrödinger equation[

−1
2
∇2 + VKS(r)

]
ϕi(r) = εiϕi(r) , (4)

where VKS(r) is an effective single-particle potential
given by

VKS(r) = Vjel(r) + VH[ρ(r)] + Vxc[ρ(r)] , (5)

where VH[ρ(r)] is the Hartree potential and Vxc[ρ(r)] the
exchange-correlation potential defined by

Vxc[ρ(r)] =
δFxc[ρ(r)]
δρ(r)

(6)

where Fxc[ρ(r)] is the exchange-correlation free energy.
The temperature appears in the self-consistent procedure
only through the occupation numbers and the exchange-
correlation free energy. For low temperature (i.e. Te �
TF [ρ(r)] where TF [ρ(r)] = 1

2kB

(
3π2ρ(r)

)2/3
is the local

Fermi temperature), Fxc[ρ(r)] may be safely replaced by
it’s value at Te = 0, that is by Exc[ρ(r)]. This approxima-
tion is particularly valid inside the particle where the local
density is almost constant and close to the bulk one. The
bulk Fermi temperature of noble metals being usually very
high (TF ∼ 6.4×104 K for Ag) the above approximation is
fully justified. However, near the surface the local density
decreases by two to three orders of magnitude leading to
a much smaller local Fermi temperature. Therefore, close
to the surface the temperature variation of Fxc[ρ(r)] is
important and must be taken into account. In the present
study we have assumed that Fxc[ρ(r)] = Exc[ρ(r)]. Since
the functional form of Exc is generally not known, several
approximations have been proposed. In the local-density
approximation (LDA), the electronic density of the in-
homogeneous system is considered to be locally uniform.
Thus, the results of the homogeneous interacting electron
gas may be used as an input data to investigate inhomoge-
neous electronic systems as metallic nanoparticles. In this
work, we have used the form obtained by Gunnarsson and
Lundqvist [15] for a uniform electron gas in the frame-
work of the LDA. The chemical potential is determined
self-consistently by requiring the conservation of the total
number of electrons from equation (3).

2.2 Excited states

2.2.1 Zero temperature: Te = 0

The optical response of the valence electrons (s electrons)
is treated quantum-mechanically whereas the classical Mie
theory is used to describe the light absorption by the d
electrons. In the usual first-order TDLDA at Te = 0, the
induced electronic density δρ(r;ω) is related to Vext(r′;ω),
the Fourier transform (with respect to time) of the exter-
nal potential associated to the electric field of the laser,
by [16–18]

δρ(r;ω) =
∫
χ(r, r′;ω) Vext(r′;ω) dr′ (7)

where χ(r, r′;ω) is the retarded density correlation func-
tion. In the dipole approximation (R � λ where λ is the
wave-length of the incident radiation) the external poten-
tial is given by

Vext(r′;ω) = −E0 z
′

×
{

3εm

εd(ω)+2εm
for r′ ≤ R

1 − (εd(ω)−εm)
εd(ω)+2εm

(
R
r′

)3
for r′ > R

. (8)
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It is possible to rewrite the induced density as

δρ(r;ω) =
∫
χ0(r, r′;ω) Vtot(r′;ω) dr′ (9)

with

Vtot(r;ω) = Vext(r;ω) +
∫
δρ(r′;ω)
|r − r′| dr′

+
∫
fxc[ρ](r, r′;ω)δρ(r′;ω) dr′ (10)

where the function fxc[ρ](r, r′;ω) is the Fourier
transform of the time-dependent kernel defined
by fxc[ρ](r, t; r′, t′) ≡ δVxc[ρ](r, t)/δρ(r′, t′) and
χ0(r, r′;ω) is the non-interacting retarded density
correlation function. From equations (7, 9, 10) we see
that χ0 and χ are related by an integral equation
(Dyson-type equation)

χ(r, r′;ω) = χ0(r, r′;ω) +
∫ ∫

χ0(r, r′′;ω)

×K(r′′, r′′′;ω) χ(r′′′, r′;ω) dr′′dr′′′, (11)

with the residual interaction defined by

K(r, r′;ω) = VC(r, r′;ω) + fxc[ρ](r, r′;ω). (12)

In the adiabatic local-density approximation (ALDA) the
exchange-correlation kernel is frequency-independent and
local and reduces to [16,18]

fxc[ρ](r, r′) =
[
∂Vxc

∂ρ

]
ρ=ρ(r)

. (13)

It should be mentioned that the functional, Vxc[ρ] in the
above equation is the same as the one used in the calcu-
lation of the ground-state (see (6)). Notice also that, the
Coulomb interaction, VC, appearing in (12) is frequency
dependent via the dynamical dielectric function associ-
ated to the d electrons [9]. For closed-shell clusters (spin-
saturated electronic systems), we have

χ0(r, r′;ω) = 2
∑
jk

[
f0

j − f0
k

] ϕ∗
j (r)ϕk(r)ϕ∗

k(r′)ϕj(r′)
ω − (εk − εj) + iδ

=
occ∑
k

ϕ∗
k(r)ϕk(r′)G+(r, r′; εk + ω)

+
occ∑
k

ϕk(r)ϕ∗
k(r′)G+∗

(r, r′; εk − ω) (14)

where ϕk(r) and εk are the one-electron Kohn-Sham wave
functions and energies, respectively. G+ is the one-particle
retarded Green’s function and f0

k are the Fermi occupa-
tion numbers at Te = 0 K (0 or 1). All the above quantities
are obtained with the procedure described in the preced-
ing section with fk = f0

k in equation (3). In order to pro-
duce numerically tractable results we have added a small
imaginary part to the probe frequency so ω → ω+iδ. The
numerical value of δ has been estimated from the experi-
mental optical density [1].

2.2.2 Finite temperature: Te �= 0

At finite electronic temperature, the grand-canonical non-
interacting retarded density correlation function reads [19]

χ0(r, r′;ω;Te) =
1
ZG

∑
n,N

exp
{
− 1
kBTe

[En(N) −Nµ]
}

×χ0
n,N(r, r′;ω;Te) (15)

where ZG is the grand-canonical partition function

ZG =
∑
n,N

exp
{
− 1
kBTe

[En(N) −Nµ]
}

(16)

with En(N) the energy of the state |nN〉 having N elec-
trons, µ the chemical potential and

χ0
n,N(r, r′;ω;Te) =

∑
m

〈nN |n̂(r)|mN〉 〈mN |n̂(r′)|nN〉
ω − (Em(N) − En(N)) + iδ

−〈nN |n̂(r′)|mN〉 〈mN |n̂(r)|nN〉
ω + (Em(N) − En(N)) + iδ

·

In the above expression n̂(r) is the particle density oper-
ator defined from the wave field operators by

n̂(r) = ψ̂+(r)ψ̂(r) (17)

with ψ̂+(r) =
∑

k â
+
k ϕ∗

k(r) and ψ̂(r) =
∑

k âk ϕk(r).
By using standard field theory techniques it is possible to
show that

χ0(r, r′;ω;Te) =
∑

k

fkϕ
∗
k(r)ϕk(r′)G+(r, r′; εk + ω;Te)

+
∑

k

fkϕk(r)ϕ∗
k(r′)G+∗

(r, r′; εk − ω;Te) (18)

where fk = [1 + exp {(εk − µ)/kBTe}]−1. In this work, we
have assumed that the residual interaction, (12), is tem-
perature independent. This assumption is consistent with
the use of Fxc[ρ(r)] = Exc[ρ(r)] in the calculation of the
ground-state properties. Therefore, as for Te = 0, the re-
sponse function is solution of the Dyson equation (11)
with χ0 given by (18). For spherically symmetric systems
the response function may be written as

χ(r, r′;ω;Te) =
∑
lm

χ̃l(r, r′;ω;Te)
[rr′]2

Ylm(r̂)Y ∗
lm(r̂′). (19)

From the frequency-dependent dipole polarizability de-
fined by

αs (ω;Te) =
4π
3

∫ ∞

0

∫ ∞

0

χ̃1(r, r′;ω;Te)[rr′]3drdr′ (20)

one obtains the dipolar absorption cross-section

σ (ω;Te) =
4πω
c
√
εm

Im [αs (ω;Te) + αd (ω)] (21)
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Fig. 1. Theoretical differential transmission for Ag2998 as a
function of the photon energy of the probe and for two different
values of Te; full line: Te = 600 K; dotted line: Te = 1200 K.

with the classical dipole polarizability of the d electrons
given by

αd (ω) = εm

[
εd(ω) − εm
εd(ω) + 2εm

]
R3. (22)

In order to compare with the experimental measurements,
one defines the differential transmission as

∆T̄

T̄
=
T̄ (Te, ω) − T̄ (T0, ω)

T̄ (T0, ω)
= −∆α̃(ω) l (23)

=
3

2πR2
[σ (ω;T0) − σ (ω;Te)] (24)

where l = 2R is the sample thickness (here, the diame-
ter of the particle), T̄ (Te, ω) and T̄ (T0, ω) are the probe
transmission in the presence and absence of the pump
and ∆α̃(ω) is the pump-induced absorption change, re-
spectively. Obviously T̄ (T0, ω) corresponds to an absorp-
tion at room temperature T0 = 300 K for the conditions
where the pump-probe experiments have been performed.

3 Results

In Figure 1, the predictions of the differential transmission
obtained from equation (23) for the closed-shell nanoparti-
cle Ag2998 as a function of the photon energy of the probe
are presented. The diameter of the nanoparticle is 4.6 nm
and the calculations have been carried out with δ = 0.1 eV
and εm = 1.5. At Te = 0 K, 97 orbitals are occupied
(occ = 97 in equation (14)) while at Te = 1200 K, 158 or-
bitals have to be included in the calculation (see Eq. (18)).
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Fig. 2. Normalized experimental spectrum of ∆T̄/T̄ of silver
nanoparticles encapsulated in an alumina matrix for a pump-
probe delay of 2 ps [1].

The comparison is made for two electronic temperatures
Te = 600 K and Te = 1200 K. The photon energy ranges
from 2.2 eV to the interband threshold energy at 3.8 eV
i.e. in the spectral region associated to the surface plas-
mon of Ag nanoparticles. All these values correspond to
typical experimental conditions [1]. The asymmetric shape
of ∆T̄/T̄ around the resonance energy is related to a com-
bination of a redshift and a broadening of the surface plas-
mon resonance.

Figure 2 shows the experimental spectrum of ∆T̄/T̄
obtained for a pump-probe delay of t = 2 ps. The pump
pulse is set at 400 nm (second harmonic of a titanium
sapphire laser amplified at 5 kHz) and the probe comes
from a continuum generated in a sapphire crystal with
the fundamental of the amplified laser [1]. The asymmetric
spectral shape of the differential transmission spectrum in
Figure 2 which is related to the shift and broadening of the
plasmon may have several origins. As pointed out in refer-
ences [1,2], the interband transition induces a modification
of the real part of the dielectric function in this spectral
region, the resonance being far enough from the interband
threshold to induce significant changes of the correspond-
ing imaginary part. As stressed in reference [2], this is
a strong indication that intraband processes also play an
important role. Indeed, as clearly seen in Figure 1, the con-
duction electrons contribution leads both to a shift and to
a broadening. We can therefore conclude that one has to
consider equally the interband and intraband part on the
same footing. While it was previously taken into account
in a phenomenological way via a shifted and broadened
Lorentzian shape, here it is derived directly from a quan-
tum many-body model within the TDLDA approach.
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4 Conclusions and perspectives

The present work is part of a theoretical study aiming
at understanding the role of the electronic temperature
on the optical response of metallic nanoparticles. So far,
we have only treated the temperature effects at a self-
consistent-field level. Even if this theoretical model is able
to reproduce the main trends of the experimental results,
more studies are necessary. In particular, an explicit
temperature dependence of the exchange-correlation
free energy, Fxc[ρ(r)], should be included in the model.
The finite-temperature field formalism seems to be well
adapted to undertake this task [12,20]. Also, even if the
surface plasmon resonance is situated below the region
of interband transitions, the temperature dependence
of the screening (real part of εd(ω)) coming from the d
electrons must be investigated (e.g. within the RPA and
the band model of Rosei [21]). Finally, we have assumed
that the constant, δ describing the damping due to
the electron-electron collisions (beyond the mean-field
approximation) does not depend on the temperature.
By using the self-consistent-field dielectric function of a
homogeneous electron gas at finite temperature [22] and
a statistical approximation [23,24], one may calculate δ
for any temperature. We are presently working on these
improvements. Another problem, which deserves to be
mentioned in connection with the finite size of the system
is the equivalence between different statistical ensembles.
In the thermodynamic limit, the grand-canonical, canoni-
cal, and microcanonical ensemble are expected to provide
the same results. However, their equivalence is no longer
ensured when the number of electrons is finite. For the size
considered in this work,N ∼ 3000, the differences between
the predictions of the above statistical ensembles are

expected to play a minor role. For smaller clusters how-
ever the question of the appropriate thermodynamics is
interesting to investigate.
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